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J. Phys. A :  Gen. Phys., Vol. 5, February 1972. Printed in Great Britain 

Quantum mechanical description and noise analysis 
of the cyclotron resonance spectrometer-detector 

L C  ROBINSON and L B  WHITBOURN 

The Wills Plasma Physics Department, University of Sydney, NSW, Australia 

MS received 26 March 1971, in revised form 5 July 1971 

Abstract. The interaction between a radiation field and a system of electrons in cyclotron 
motion in a homogeneous magnetic field is described from a quantum mechanical view- 
point. With high magnetic fields the interaction can give a means of far infrared detection 
and high resolution spectral analysis. The sources of fluctuations that limit the ultimate 
detectivity are discussed. I t  is concluded that this limit is set by background room temperature 
radiation fluctuations at a level of approximately 1.4 x IO- l 6  W Hz-”’ when the interaction 
time is lO-’s. With longer interaction times the limit of sensitivity may be well below 

W Hz-’? 

1. Introduction 

In a recent paper (Robinson 1970a) one of the authors proposed a means of far infrared 
radiation detection and spectral resolution based on free electron cyclotron resonance in 
a high magnetic field. A system of orbiting monoenergetic electrons brought into inter- 
action with an oscillating electric field in an overmoded resonator has its energy re- 
distributed, and observation of this redistribution gives a measure of the perturbing 
radiation field. Configurations of magnetic fields required for the production of the 
monoenergetic cyclotron oscillators have been discussed in detail (Robinson 1970a, 
Robinson and Szekeres 1970 and Robinson 1970b). Energy analysis after the interaction 
is achieved by unwinding the cyclotron motion with an inverse magnetic mirror field and 
selecting by means of bias electrodes those electrons that have acquired maximum 
energy from the radiation. 

The previous calculation has shown that the energy acquired by an electron in 
cyclotron motion in a rotating electric field E exp(iot) can be written 

q 2 E 2 z 2  sin2r  sin r + qEu,t sin(r + 4)- w= w,+w,=-- r 2m r2 
where 

Here q and mare the electronic charge and mass, respectively, B is the magnetic induction 
field, U,, is the velocity of the orbiting particle before the interaction, T is the duration of 
the interaction, wand 0, are the angular frequencies of the field and particle, respectively, 
and 4 specifies the phase angle of the particle with respect to the field. It has been shown 
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that while the phase averaged term W, = (qZE2r2/2m)(sin2T/T2) can give a sensitive 
measure of E, the term W, = qEu,T sin(T + 4)  sin T/T considerably enhances the sensi- 
tivity. The bandwidth of the detector is determined by the term sinT/T and this is 
narrow and magnetically tunable. The system is therefore a spectrometer-detector. 

In any sensitive detector the ultimate limit of detectivity set by noise fluctuations 
is important. In the cyclotron resonance detector this question is particularly interesting 
because the contributions from room temperature fluctuations are reduced by the 
narrow input bandwidth, and because the natural postdetector amplifier is a relatively 
noiseless electron multiplier. In the present paper we calculate the orders of the levels 
of noise originating from the various sources of random fluctuations. Four sources of 
noise are distinguished : (i) background room temperature radiation noise ; (ii) detector 
noise ascribed to fluctuations of induced transitions, and photons emitted spontaneously 
by the cyclotron oscillators within the resonator ; (iii) noise in the collected electron beam : 
(iv) postdetector amplifier noise. 

Certain aspects of the noise (eg fluctuations due to spontaneous transitions) can be 
seen most clearly from a quantum mechanical viewpoint. Accordingly we give in the 
Appendix an outline of the origin of expression (1) in quantum theory. In short, the 
operation of the detector can be described in terms of induced transitions between 
Landau levels with the eigenstate energies of cyclotron motion W, = (n++)ho,, where 
h = 27th is Planck’s constant and n = 0,1,2, .  . . . Electrons are initially pumped into 
the energy eigenstate n = mu;/2hwc by the configuration of magnetic fields. The inter- 
action of the cyclotron resonance oscillators with a radiation field then distributes the 
electrons sinusoidally within the Landau ladder of states with amplitude 

q E u , ~  sin r n=-- 
hw, r 

and raises the mean level of energy by 6 n  = W,/hw,. Detection occurs when, as illus- 
trated in figure 1, electrons from the highest populated levels overcome the applied bias 
potential barrier. This is essentially the picture developed in the Appendix, and used in 
9 3. 

n t b n c h n  

B i a s  level 

n t dn 

~ ~~ 

n + b n - h n  

Figure 1. Illustration of the distribution of cyclotron resonance oscillators in the Landau 
ladder of eigenstates after interaction with a radiation fieid. The levels are separated by 
hw,, and the dark line on them represents the number of oscillators in the level. Initially all 
oscillators occupy the nth level, but the field perturbation shifts them upwards by 6n and 
distributes them sinusoidally about n + 6 n  with amplitude An. 
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2. Radiation noise 

A limitation to the minimum signal detectable by the cyclotron resonance mechanism 
will be set by random fluctuations in the stream of photons entering the resonator from 
the room temperature background. To estimate this we calculate the flux of photons 
crossing an area A (equal to the receiving aperture of the detector) per second within an 
enclosure in thermal equilibrium at temperature T = 300 K. The minimum detectable 
signal set by this source of noise we then take as equal to the statistical variation in this 
number of photons (the one second interval being the integration or observation 
time). 

I t  is known from the statistical mechanics of Bose-Einstein particles that the mean 
volume density of photons in the frequency interval between v and v + dv is 

8nv’ dv 
c3(exp(hv/kT)- l }  

j j =  

and that the mean square statistical fluctuation in this number density is 

exp(hv/k T) - 1 
- 
An’ = E l l +  (3) 

The application of equation (3) to the fluctuations in a stream of thermal radiation such 
as we are considering here has been discussed by Lewis (1947). The number N of photons 
crossing area A within solid angle dR in a direction making angle 8 with the normal 
to - the area in time t is f i  CA? cos BdR/4n, and the mean square fluctuation in this number 
is An2 cAt cos BdR/4n. By (2) and (3) this is 

2v’ exp(hv/kT)A cos 8 dR dv 
c2{exp(hv/kT) - l}’ 

m= t .  

For far infrared wavelengths approaching 1000 pm, h v  << kT, and this becomes 

t .  
- 2k’ T’ A cos 8 dR dv 

c’h’ 
AN’ = 

Assume a detector aperture with A cos 8 = 1 cm’, and take dR = 0.2 for the solid 
angle from which room temperature radiation is accepted. The root mean square 
fluctuation in the background photon count with only one polarization is 

Note here that the photon flux has two orthogonal polarizations of which only one can 
couple to the electric dipole moment of the cyclotron - oscillator. Thus for comparison 
with a linearly polarized wanted signal, m (and so AN2) must be halved. For T = 300 K 
and a detector input bandwidth dv = lo7 Hz as previously estimated (Robinson 1970a) 

- 
‘Y 3 x lo5 t”’ photons. 

By our criterion of detectability we conclude that 3 x lo5 linearly polarized signal 
photons can be detected in an observation time of 1 s. For a wavelength of lo00 pm this is 
a signal power of about 6 x 10- l 7  W. To calculate the energy imparted to the cyclotron 
oscillators by this signal we use (1). We have previously (Robinson 1970a) taken the 
interaction time z as equal to s, and have estimated that E v 3 x lo5 PI/’ V m-l  
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or 2.3 x V m- '  for P = 6 x 10- l 7  W. Near the optimum phase angle the energies 
acquired by the cyclotron resonance oscillators will, by (l), be 7 to 8 quanta for 500 eV 
electrons and 1 or 2 quanta for 20 eV electrons. 

In assuming dR = 0.2 sr we have implied that the resonator surrounding the electron 
beam is cooled well below room temperature. If the resonator is at room temperature 
the root mean square photon fluctuation, and hence the minimum detectable signals. 
will be increased by nearly an order of magnitude. 

3. Detector noise 

Detector noise may arise from fluctuations in the number of transitions between Landau 
levels induced by the input signal, and from spontaneous transitions. 

That the former process is negligible can be seen immediately. If 500 eV electrons 
are injected into the resonator at the rate of 10' sC1  an input power of 6 x 10- '' W will 
result in a very large number (1 lo6) acquiring 7 or 8 quanta of additional energy 
(those for which r+  4 is in the neighbourhood of the optimum phase angle n 2 in  
equation (1)) to overcome the potential barrier. The ratio of this large number of col- 
lected electrons to its RMS fluctuation represents a large signal to noise ratio. 

The probability of spontaneous emission of a photon by a cyclotron oscillator during 
its interaction time T = 10- ' sin the resonator can be found from well knownexpressions. 
The probability of spontaneous emission by an electron in the nth Landau level is 
(Louise11 1964) 

1 2  

wspon = 0," i"] ( n  - llpln) 
3n2h € 0  

( 5 )  

where the matrix element is given by (7) in the Appendix, and p,, and to are the permea- 
bility and permittivity of free space. 

If the initial kinetic energy is 500 eV, Landau levels with n 2 4 x lo5 will be populated. 
This quantum number may be used to calculate wspon since, as can be seen in the Appendix, 
the perturbations 6n and An produced by the interaction with radiation are relatively 
small. Again assuming a wavelength of 1000 pm we find 

Wspon 2 3 x to6 s -  l .  

Thus during the lop ' s  interaction time an electron emits a photon spontaneously with 
probability 0.3. This is to be compared with the 7 to 8 photons absorbed by induced 
transitions with 6 x 10- *' W of signal. This means that while induced transitions will 
cause favourably phased electrons to ascend 7 or 8 steps up the Landau ladder only 0.3 
of these electrons will jump down a single level due to spontaneous emission of a photon. 
When 20 eV electrons are used wSpon 2 6 x lo5 s -  and a cyclotron oscillator will emit a 
photon spontaneously with probability 0.06, which is much less than the 1 or 2 photons 
of emissions induced by 6 x 10- l 7  W. 

4. Beam noise and postdetector amplifier noise 

From our estimates in $4 2 and 3 some lo6 electrons should be detected under conditions 
where the input signal is approaching the limit set by background room temperature 
fluctuations. The RMS fluctuation of lo3 electrons in this current (so called 'shot' noise) 
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will be a negligible contribution to the overall noise. Fluctuations of this order will also 
prevail if a steady fraction of the current flows to the collector in the absence of radiation. 

In addition to beam shot noise, flicker noise produced by fluctuations in the cathode 
emission is possible. Flicker noise can be minimized by chopping the signal at a high 
frequency f,  for it falls off approximately as f -'I2. The short response time of the 
cyclotron resonance detector makes it suitable for fast chopping. 

During postdetector amplification additional noise will be introduced. However, 
the natural amplifier for a low current beam is an electron multiplier, and these are 
quoted as contributing very little noise. We can control the velocity of the electrons 
striking the first dynode by suitably biased grids and can thus adjust for maximum 
secondary emission. Fluctuations will arise in the number of secondary electrons 
emitted by the dynodes, but according to McLean and Putley (1965) this will increase the 
noise by only about 30-40 %. 

Additional noise may also come from fluctuations in the potentials of bias grids that 
arise from imperfect vacuum conditions. While this source of noise is practical rather 
than fundamental, it is clear from our foregoing figures that such fluctuations will 
become significant when they are at the millivolt level. 

5. Concluding remarks 

The noise equivalent power (NEP) of the cyclotron resonance detector appears to be 
close to the limit set by the fluctuations in background radiation calculated in $2. 
By convention, NEP is defined for an output bandwidth of 1 Hz (which is an observation 
time oft = 1/2n s) and we must increase the 6 x 10- l 7  W estimate for t = 1 s accordingly. 
Noise energy fluctuations (see equation (4)) vary as t1 '2  so for an observation time of 
t # 1 s the noise equivalent power is multiplied by a factor oft-'". Thus for t = 1/271 s 
the NEP becomes 1.5 x W Hz-'12. The Jones (1953) factor ofmerit D* (the recipro- 
cal NEP for a detector aperture of 1 cm2) is about 7 x l O I 5  cm Hz'l2 W- '. 

Our estimates suggest an ultimate sensitivity for the cyclotron resonance detector 
some orders of magnitude better than both the indium antimonide free carrier far infra- 
red detector and the Josephson junction. In its tuned mode the former has a NEP of 
about 5 x IO-" W Hz-'12 (Putley 1963), and the latter has a limit in the region of 

W H Z - ' / ~  (Physics Today 1970). In the indium antimonide detector the major 
source of noise is the postdetector amplifier and this, as we suggested in § 4, is essentially 
eliminated when our electron beam is amplified in an electron multiplier. Background 
radiation is significant in both the indium antimonide and Josephson effect detectors, 
and it is here that the cyclotron resonance process under discussion offers a clear im- 
provement through its narrow input bandwidth. It is narrower by a factor of lo5 than 
the indium antimonide detector and it thereby reduces the background photon fluctua- 
tions by a factor of about 300. A similar improvement factor applies relative to the 
niobium-niobium Josephson junction described by Grimes et a1 (1966) and measured 
as having 5 x 

Recent work concerned with the storage of ions and electrons for precision hyperfine 
structure and g factor measurements (Wesley and Rich 1970 and private communication, 
Major and Dehmelt 1968) has shown that interaction times many orders of magnitude 
longer than the lo-' s value assumed here can be attained. By using these techniques 
further reduction in input bandwidth is possible, and the ultimate sensitivity to small 
signals may be well below W Hz-'12. An upper limit in electron storage time will 

W Hz-'12 NEP. 
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be set by a compromise with the number of electrons stored in accordance with the need 
to keep the effects of space-charge forces small. Ultimately, the minimum cyclotron 
resonance linewidth will be set by such factors as the maximum attainable magnetic 
field homogeneity and the spread in the separations of populated Landau levels due to the 
relativistic energy dependence of electron mass. 

Finally, a comment concerning the possibility of superheterodyne cyclotron reson- 
ance detection may be of interest. If a local oscillator wave is supplied to the resonator, 
then through the term in E 2  in equation (1) terms in W with sum and difference fre- 
quencies occur with amplitudes proportional to the product of the local oscillator and 
signal amplitudes. This can increase the magnitude of W, and its response to the signal, 
and we can physically interpret this as occurring because the local oscillator excites 
electrons to rise higher up the Landau ladder where (by (7), Appendix) they are more 
responsive to the input signal. However, the term W, in equation (1) already does exactly 
this through the term u o ,  the initial velocity of the electrons. In this sense, we can 
regard the cyclotron resonance detector as having a superheterodyne principle inbuilt 
(the ‘difference’ or ‘intermediate’ frequency can be simulated by chopping the radiation, 
or by chopping the electron beam with an alternating voltage applied to a grid). 
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Appendix. Quantum mechanical description of the cyclotron resonance interaction 

It is easy to show (Landau and Lifshitz 1965), and it is well known, that the Hamiltonian 
operator for an electron in a homogeneous magnetic field results in a form of the 
Schrodinger equation that is formally identical with that of the harmonic oscillator. The 
kinetic energy of the cyclotron motion therefore has quantized values given by (n + ))hw,, 
and forms the Landau ladder of states specified by n = 0, 1, etc. Drift motion parallel 
to the magnetic field adds to this an energy continuum. The wavefunctions corresponding 
to the energy eigenstates are the well known ‘number’ eigenfunctions of Hermite poly- 
nomials. 

If we regard the interaction between the electron and the electric fields as a switched-on 
perturbation of duration z and assume nondegeneracy of the eigen energy states, we can 
apply the results of first order perturbation theory to the interaction. Electrons with 
kinetic energy *mug are ‘pumped’ into the nth Landau level prior to the interaction and 
undergo induced transitions for single quantum absorption to the (n + 1)th state with 
probability (Davydov 1965) 

The matrix element of the electric dipole moment is (Davydov 1970) 
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and the lineshape function g,(w,) is given by 

Replacement of n by n - 1 in (6) and (7) gives the probability of induced emission. For 
an nth state population of N electrons the net cyclotron energy absorbed by induced 
transitions in time T is 

Comparing (9) and (1) we observe that first order perturbation theory describing single 
quantum transitions yields the phase averaged energy absorption W1. 

Electron motion with phase 4 with respect to the driving force can be interpreted in 
terms of a wave packet formed from a superposition of wavefunctions of number eigen- 
states. A gaussian wave packet satisfying the Heisenberg minimum uncertainty condition 
and whose centre moves in cyclotron motion precisely as the classical particle (Henley 
and Thirring 1962) can be constructed. The state constructed by the superposition is 
called the coherent state. The forced motion of the wave packet can be analysed in 
terms of coherent states using an operator algebra that has been described by a number 
of writers (Louise11 1964, Glauber 1963, Fuller et a1 1963, Carruthers and Nieto 1965). 

We seek answers to the following questions : how are N cyclotron harmonic oscil- 
lators, initially in the nth energy eigenstate, redistributed in the Landau ladder by the 
interaction described? How does the quantum description of the energy redistribution 
go over to the classical limit? To answer these questions we apply the analysis of 
Carruthers and Nieto (1965) for the coherent states of a forced harmonic oscillator. 

Coherent states [U) are eigenfunctions of the annihilation operator a in the sense that 

a(u)  = ulu) (10) 

U = (U[ eib (11) 

where 

is a complex number whose argument is the phase angle of the oscillator, and the square 
of whose modulus gives the mean excitation of the oscillator. The Hamiltonian operator 
can be written 

H = hw,(a+a+)). (12) 

For a harmonic oscillator in an initial state specified by a (and a+), and raised by a 
time dependent driving force with Fourier transform F to a final state specified by 

b = a+iu, (13) 
where 

Carruthers and Nieto derive an operator S (the S matrix) in terms of which the matrix 
element (klSln) for transitions from an initial number state n to any final number state 
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k can be found. For the present case of a time dependent force acting on the harmonic 
oscillator (Carruthers and Nieto 1965) 

i(a + F + aF*) s = expj (2mhw,)'!' 1 .  (15) 

I t  can be shown (Carruthers and Nieto 1965) that this leads to the transition probability 

for k 2 n, or by the same formula but with k and n interchanged if k < n. The term 
L ~ : - " ( ( c c , ~ ~ )  is the associated Laguerre polynomial. 

Fuller et al(1963) have summed (16) over upward transitions k > n, and downward 
transitions k < n, and have shown that the mean energy transfer to an oscillator is 
hw,l~1,/~. This is precisely the phase averaged term W, in the classical expression (1). 
Carruthers and Nieto have obtained the same result for the average energy absorbed, 
but their formulation also yields the phase dependent term. In the Heisenberg picture of 
quantum mechanics we can write the energy shift produced by the interaction as 

(17)  

Here the subscript 'in' refers to the initial state of the oscillator and the subscript 'out' 
refers to the state of the oscillator after the interaction. The Hamiltonian operator of 
the 'in' state oscillator is 

W = (Yinlffout - Hinlyin). 

Hi, = ho , (a+u+i )  i 121 

H,", = hU,(b+ b +f, (18) 

and that of the 'out' state is 

where the annihilation operators are related as in (13) .  Substitution gives 

W = hw,{ / r x O l 2  + i(( Yi,ia + /Yin>cco - complex conjugate)). (19) 

If Yin is a coherent state with phase parameter /3 = 1/31 ei4, (19) reduces to 

W = hw,(la,12 + 2  Im(pcrg)). 120) 

In going over to the classical cyclotron oscillator we must have 

where r,,,, is the cyclotron orbit radius at the termination of the interaction. For a 
constant driving field of angular frequency o and duration z, F = qEz sin T/T in (14). 
When a; and fi are substituted from (14) and (21), equation (20) reduces exactly to the 
classical expression (1). 

The detector operates as follows : electrons are initially pumped into the nth Landau 
level where n = mu32ho,.  While raising the mean level of the system by an amount 
6n = W,/ho,, the interaction with the radiation field distributes the electrons about the 
level n + 6n in a sinusoidal distribution up to the peak level n + 6n + An, and down to the 
level n + 6n -An, where An = (qEu,s/ho,)(sin T/T). Only those electrons from the 
highest populated levels of the Landau ladder can overcome the applied bias potential 
barrier and be detected. The situation is illustrated diagramatically in figure 1. This 
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‘clipping’ of oscillators from the vicinity of the peak of the distribution of populated 
number states provides the nonlinearity of the detection process. The separation of the 
Landau levels hoc  is magnetic field tunable.and the width of the levels is given by the 
s in2r / r2  function. 
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